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SUMMARY

Large eddy simulation (LES) is based on separation of variable of interest into two parts—resolved
and subgrid. The resolved part is obtained numerically using modi�ed transport equation while the
e�ect of the subgrid part is modelled using subgrid-scale (SGS) models. In this paper we present and
discuss new one-equation LES models for SGS scalar �ux, SGS scalar dissipation and SGS energy
dissipation. The proposed models belong to a new family of SGS models—dynamic structure (DS)
models. The DS models borrow the structure of the modelled term from the corresponding Leonard
term, and a special scaling factor is then used which does not contain user-speci�ed constants. The
models are evaluated a priori using available DNS data for a non-reacting mixing layer and decaying
isotropic turbulence; the evaluation results compare well with viscosity and similarity models. During
the a priori tests, the DS models were found to perform better than dynamic viscosity and similarity
models for various test-to-base �lter size ratios and non-symmetric �lters. For a posteriori evaluation,
the models are implemented into a high-order �nite-di�erence code and an LES of decaying isotropic
turbulence is performed. The results match the data available from the literature and DNS simulations.
Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the last several decades, large eddy simulation (LES) approach has been successfully
applied to a variety of problems ranging from the weather prediction [1] to simulation of
internal combustion engines [2]. The main advantage of LES is that it captures the un-
steady e�ects of the modelled �ow better than the Reynolds-Averaged Navier–Stokes (RANS)
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approach, and yet does not require such extensive computational power as direct numerical
simulation (DNS).
The essence of the LES approach is the separation of variables of interest like velocity,

temperature, mixture fraction and other scalars, into resolved and unresolved parts. The re-
solved, or large-scale quantities are computed numerically using modi�ed conservation equa-
tions. The unresolved, or subgrid, quantities are not directly available and thus their e�ect on
the resolved scales must be modelled. The quality of subgrid models is most crucial for any
LES computation.
The separation of scales is done by applying a spatial �lter to the variable of interest.

For any �ow variable �, it is postulated that �= �� + �′, where the resolved part �� and
unresolved part �′ are de�ned as ��=� ∗ G and �′=� − ��. Here, G is the �lter function
and must satisfy ‖G‖1 = 1, and ‘∗’ is the convolution operator. Also, some models require an
additional �ltering operation, which is referred to as ‘test �ltering’. Usually the test-�ltered
quantity is denoted by �̂ and is de�ned as �̂=�∗Ĝ, where Ĝ is called the test �lter function.
The unresolved quantities are di�cult to measure in experimental setup thus making

a priori LES model evaluation di�cult. An alternative consists of utilizing existing DNS
results where all scales are resolved and thus the subgrid-scale (SGS) quantities are available
by applying a straightforward �ltering operation; this technique is used in this work.
We consider three new SGS models: for SGS scalar �ux, SGS scalar dissipation, and SGS

energy dissipation. Each of these three models is evaluated a priori using available DNS data
for decaying isotropic turbulence and a non-reacting incompressible mixing layer. After that,
to evaluate the momentum-related models a posteriori, LES simulations of isotropic decay is
performed.

2. GOVERNING EQUATIONS AND MODELLED TERMS

The governing equations for LES are obtained by formally applying the spatial �ltering proce-
dure to the fundamental conservation equations [3]. The LES governing equations of interest
are conservation of momentum and scalar
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Here, �ij = uiuj − �ui �uj is the SGS momentum �ux, � is a generic scalar, �i�= ui� − �ui �� is
the SGS scalar �ux, D is the di�usion coe�cient, and �! is the �ltered source term for the
scalar �, e.g., due to chemistry. Both Equations (1) and (2) have unclosed terms which need
to be modelled. Many models for �ij have been proposed and evaluated (for review, see
Reference [4]). Fewer models have been proposed for �i�.
Several models for �ij employ an auxiliary LES quantity—SGS kinetic energy [5–7]

k=(uiui − �ui �ui)=2, for which an additional transport equation is solved

@k
@t
+ �ui

@k
@xi
= �

@2k
@xi@xi

− �− �ij �S ij (3)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:911–923



DYNAMIC STRUCTURE SGS MODELS FOR LES 913

Here, � is the SGS energy dissipation, and �S ij is the resolved rate of strain tensor
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The SGS energy dissipation term is unclosed and thus needs to be modelled too.
In the models that we are going to present, we make use of another auxiliary quantity—the

SGS scalar variance �= ��2 − ��
2
, which is obtained from a separate transport equation. For

the incompressible case, one of the forms of the transport equation for � is given by [8]
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Here, D is the di�usion coe�cient, � is the LES grid spacing, and � denotes the SGS scalar
dissipation
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Thus, there are four terms to model: �ij , �i�, �, and �. This work deals with models for the
latter three terms. For the SGS momentum �ux �ij , we use the following DS model [7, 9]:

�ij ≈ 2k
Lmm

Lij ; Lij = �̂ui �uj − �̂ui �̂uj (5)

Here k is the SGS kinetic energy, and Lij is the Leonard term.

3. FORMULATION OF THE MODELS

For the SGS scalar �ux �i� we propose to use the following model:

�i� ≈ �
�
Li�=

��− �� ��
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[
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Here, (̂·) denotes the test �ltering, � is the SGS scalar variance, �= �̂� �� − �̂� �̂� is the test-

level SGS scalar variance, and Li�= �̂ui �� − �̂ui �̂� is the Leonard-type term for the SGS scalar
�ux. Note that the model can be derived in two ways. First, we can treat this model as a
self-similarity model [10] with a particular form of scaling coe�cient. Alternatively, we can
start with the assumption �i� ≈ ci� and formally apply the Dynamic Procedure [11] in order
to determine coe�cients ci. We then arrive to ci=Li�=�.
For the SGS scalar dissipation �, the following model is proposed:

�≈C� ��L� (7)
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Here, L� is the Leonard-type term for the SGS scalar dissipation
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The form of the model was suggested by the self-similarity idea and the particular scaling

factor of model (6) for �i�. The recommended value for the constant C�, based on the a priori
tests described later, is C�=2. Again, like with model (6), we can derive model (7) using
Dynamic Procedure starting with �≈C�f� and arriving to f=L�=�.
Finally, the proposed model for the SGS energy dissipation � is

�≈ � · F · L�= � · F ·
[
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We shall try to determine the form of the scaling factor F from a priori tests described in
the next section. It is currently a work in progress, and for the a posteriori test, a simple
form of F , described later, is used.
We would like to consider the three models presented as ones that belong to a new class of

SGS models—Dynamic Structure (DS) models. The DS models take the general structure
of the modelled term from the corresponding Leonard-type term and then a particular form of
the scaling factor is sought.

4. A PRIORI TESTS

4.1. DNS data

For a priori tests we used several sets of DNS data. The �rst set of DNS data was taken from
the literature [12] and consisted of one snapshot of the velocity �eld in the triple-periodic
(2�)3 box with Reynolds number Re� based on Taylor microscale � equal to 104. In our
study this DNS data was used to evaluate the model for �. The second set of data was
generated by a �nite-di�erence code to simulate the incompressible non-reacting mixing layer
with temperature as a passive scalar [13]. This set of data was used to evaluate all presented
models.

4.2. SGS energy dissipation

First, we conducted a priori test for the model (8) using the �rst set of DNS data. The
proposed form of the scaling factor F is the following:

F =C�

[
2k
Lii

]	
Here, k is the SGS kinetic energy, Lij is the Leonard term, and C� and 	 are the constants to
be determined from this a priori study.
Figure 1(a) presents the probability density functions (PDFs) for C� obtained for the case

	= 1
2 . Di�erent curves refer to di�erent combinations of the test and base �lters. The numbers

in parentheses refer to the size of the base and test �lters in terms of the DNS grid spacing.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:911–923



DYNAMIC STRUCTURE SGS MODELS FOR LES 915

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Cε

P
D

F

case 1 (3,5)
case 2 (3,7)
case 3 (3,11)
case 4 (3,13)
case 5 (5,7)
case 6 (5,9)
case 7 (5,15)
case 8 (7,11)
case 9 (7,15)

0 20 40 60 80 100 120 140 160
0

0.005

0.01

0.015

0.02

0.025

0.03

Cε

P
D

F

case 1 (3,5)
case 2 (3,7)
case 3 (3,11)
case 4 (3,13)
case 5 (5,7)
case 6 (5,9)
case 7 (5,15)
case 8 (7,11)
case 9 (7,15)

(a) (b)

Figure 1. (a) PDFs for C�; and (b) C�=�3=2 for the case 	= 1
2 .

Figure 1(a) shows a clear dependence of C� on the base �lter size � for 	= 1
2 . This motivated

us to compute PDFs for C�=�
 for various values of 
. The resulting PDFs for the value of

 equal to 3

2 are presented in the Figure 1(b). The DNS data for isotropic turbulence [12] is
used.
Evaluation of the model for � using the data from DNS of a mixing layer shows similar

trends, although the PDFs are not as perfectly aligned. The di�erence is attributed to a high
degree of �ow anisotropy present in the mixing layer.
Thus, the �nal form of the DS model for the SGS energy dissipation � is as follows:
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where C is a scaling constant, l is a length scale, both to be determined in the future work.

4.3. Scalar-related models

In order to evaluate the scalar-related SGS models a priori, we used the second set of data
from the DNS of an incompressible non-reacting mixing layer [13].
The DNS was conducted with the following parameters: the grid size of 481× 241× 16

in the streamwise, transverse and spanwise directions, domain size of 120× 60× 9:6, velocity
ratio of 1

3 and Reynolds number of 200. All lengths are normalized by the inlet vorticity
thickness, and the temperature is used as a passive scalar. The simulation was conducted
using a �nite-di�erence non-dissipative code that is 11th order accurate in space and �fth-
order accurate in time. A thorough accuracy study has been performed [13].
Similar to the case of the model for SGS energy dissipation, we compared performance

of DS models (6) and (7) with two models found in the literature by varying the base and
test �lter sizes and dimensions. This, in our opinion, should test the models’ robustness, i.e.,
whether the performance is a�ected by size and shape of base and test �lters.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:911–923



916 S. G. CHUMAKOV AND C. J. RUTLAND

-0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

DNS

M
O

D
E

LS

Viscosity Model
DS Model

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Relative Error

P
D

F

DS Model
Similarity Model

(a) (b)

Figure 2. (a) Scatter plot of �i� computed from DNS data vs the DS model (circles) and dynamic
viscosity model (triangles); and (b) PDFs of relative error for DS model (solid) and self-similarity model

(dashed) for the SGS scalar �ux �i�.

Figure 2(a) presents the result of comparison of the DS model (6) for the SGS scalar �ux
with the common dynamic viscosity model given by [14, 15]

�i� ≈ −C�2| �S ij |@
��

@xi

The �gure shows the scatter plot of the modelled quantity calculated from the DNS data
versus the value of the model. The advantage of the DS model is evident from the scatter
plot—the points that correspond to the DS model lie much closer to the identity graph (the
line) and the dispersion is much narrower.
A comparison was made of the DS model to a more successful model—scale-similarity

model, which is given by [10]

�i� ≈ cLi� (10)

The value of the constant c was set to 1. This time a di�erent sort of comparison was made.
We calculated the PDF of relative error E for both models, de�ned as

E=
model− �i�

�i�

The result is shown in Figure 2(b). The combination of the base and test �lter sizes was chosen
in such a way that it resulted in the best performance of the scale-similarity
model (10).
The DS model shows a sharper and more narrow peak in the PDF of relative error and

thus can be considered superior. Moreover, the DS model appeared to be more robust, i.e., it
showed weaker dependence on the base and test-level �lter sizes and shapes.
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Figure 3. PDFs of relative error for DS model (solid) and momentum-based model (dashed) for the
SGS scalar dissipation �0. Di�erent lines correspond to di�erent base and test �lter combinations.

The same type of a priori test was conducted for the DS model for the SGS scalar dissi-
pation. For comparison, a model based on the momentum analogy was chosen [16]

�0 ≡ 2D@�
@xi
@�
@xi

≈ 1:1 �
k
� (11)

This model, although criticized in the literature [17], was chosen for comparison due to
its simplicity, relatively good performance and independence on spectral formulation, which
broadens its applicability range.
For the comparison purposes, values of �0 were computed using both DS model (7)

�0 ≈ 2D
[
2�L�=�+ @ ��=@xi@ ��=@xi

]
and momentum-based model (11) and then compared to

the values of �0 obtained from the fully resolved DNS �eld.
We conducted the a priori comparison for several cases. The base and test �lter sizes

were varied, as were the �lter shapes. This was done in order to test the robustness of
both models. PDFs shown in Figure 3 were computed for various �lter dimensions ranging
from 3�g to 15�g, and for �lter shapes ranging from isotropic to highly asymmetric, e.g.,
6�g × 14�g × 10�g, where �g is the DNS grid spacing. The performance of the momentum-
based model appears to be strongly dependent on the chosen �lter con�guration, while the
DS model seems to be almost una�ected by it. In our opinion, this shows that the DS model
is more robust.
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5. LES OF DECAYING ISOTROPIC TURBULENCE

5.1. Experimental and theoretical results

In an earlier work [8], we performed a posteriori testing of DS models by conducting LES
of an incompressible mixing layer and matching the statistics from the LES run with ones
obtained from DNS [13]. In this work, we evaluate the DS models by performing LES of
decaying isotropic turbulence.
By decaying isotropic turbulence (DIT) we mean the �ow that has zero mean velocity,

is homogeneous and isotropic. Numerical simulation of DIT, although somewhat impractical
for engineering applications, became a de facto standard test case for a posteriori evaluation
of LES models. This might be attributed to the fact that of all turbulent �ows, DIT is one
of the most well studied. A lot of theoretical results are available [3, 18], and some widely
recognized measurements and DNS simulation results are available in the literature [19–21].
Generally, two types of comparison to the experimental data can be made for a posteriori

evaluation:

• Energy spectrum for di�erent times, or more speci�cally, for di�erent Re�;
• Rate of decay of kinetic energy in time.

The former is more suitable for DNS rather than LES since the LES and DNS energy spectra
are quite di�erent for non-cuto� �lters (see Figure 4(a)). Thus the main comparison we are
going to make is matching the energy decay rate in time. This is indeed a good test for both
models for the SGS stress �ij and the SGS energy dissipation �. This particular test evaluates
the ability of both models to manage the energy budget between the resolved and unre-
solved scales, and unresolved and viscous scales as well. Energy transfer rates on both levels
are closely related and both models must perform adequately to reproduce the experimental
results.
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Figure 4. (a) Energy spectra for resolved [12] and �ltered �ow �elds using non-cuto� �lters of various
sizes; and (b) Kinetic energy decay: experiments by Comte-Bellot and Corrsin [20] (squares) and Cerutti

and Meneveau [21] (triangles). The exponent n=1:3 is plotted for comparison.
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In the current literature, when the LES of DIT is performed, usually the energy decay
rate is compared to the experimental measurements of Comte-Bellot and Corrsin [20] on a
non-logarithmic plot [5]. The type of comparison we are going to make di�ers from the one
usually performed.
In an earlier paper, Comte-Bellot and Corrsin’s [19] measurements suggested that the total

energy decays as a power law, which, in the laboratory frame, can be written as

K
U 2
0
=A

[
x − x0
M

]−n
(12)

where K is the total kinetic energy, U0 is the freestream velocity, A and M are constants, x
is the streamwise co-ordinate, and x0 is the virtual origin.
In general, the DIT exhibits two di�erent types of behaviour: inertia-dominated in earlier

stage, and viscosity-dominated in the �nal stage when Re� is low enough [3]. For the inertia-
dominated period, only experimental measurements are known. The total kinetic energy clearly
exhibits the power-law decay similar to (12). Both Comte-Bellot and Corrsin’s data [20]
and Cerutti and Meneveau’s [21] data suggest n=1:29. The values of the decay exponent
n between 1:15 and 1:45 are reported in the literature but it has been suggested [22] that
nearly all of the data are consistent with n=1:3. Figure 4(b) shows the energy decay rate
extracted from the experimental measurements by Comte-Bellot and Corrsin [20], and Cerutti
and Meneveau [21]. The exponential decay rate for n=1:3 is plotted for comparison.
The energy decay rate for the viscosity-dominated (�nal) period can be obtained analyti-

cally from the Karman–Howarth equation [18], which yields E ∝ t−5=2, which is in excellent
agreement with existing experimental data. It is emphasized that this solution applies only to
very low Reynolds numbers—much lower than is generally of interest. Thus, instead of trying
to match the experimental data for the energy decay rate and power spectra, we are going to
match the energy decay rate given by LES against the power law (12) with n=1:3 for the
inertia-dominated period, and n=2:5 for the �nal period.

5.2. LES results

The following two sets of models have been tested a posteriori:

1. DS models

�ij ≈ 2k
Lmm

Lij ; �≈ �C� 2kLmm

[
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− @̂ �ui
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]
2. The dynamic viscosity one-equation models (referred to as ‘Localization models’, or
LM) [5, 6, 23]

�ij ≈ −0:05 �
√
k �S ij ; �≈ 1:0 k

3=2

�

Figures 5–7 present the results from LES runs. The �rst run, referred to as ‘DS’ in �gures,
uses the �rst set of models with an empirical constant C�=8. The second run uses the second
set of models and is referred to as ‘LM’ in the �gures. For the LM set of models, the Dynamic
Procedure can be applied in order to estimate the a priori given coe�cients [5]. However,
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Figure 5. (a) Decay of total kinetic energy in time for DS and LM sets of models. Slopes for n=1:3
and 2:5 are plotted; and (b) decay of the SGS kinetic energy in time for DS and LM sets of models.
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Figure 6. (a) Evolution of the energy transfer term in time for DS and LM sets of models;
and (b) dissipation of SGS kinetic energy in time for DS and LM sets of models.

the resulting integral equation is not always solvable [7] thus we used constant coe�cients that
resulted in the best performance of the given set of models [23]. Both runs were performed
using 323 computational grid.
Figure 5(a) depicts the log–log plot of the decay of total kinetic energy in time for both

models, along with the slopes for n=1:3 and 2:5. As it can be seen, both models seem to be
able to capture the total energy decay rate quite e�ciently. The separation between the inertia-
and viscosity-dominated regimes is clearly visible. The slopes on the log–log plots match the
theoretical and experimental predictions well. However, in the LM run, the transition to the
�nal phase of the �ow is more spread out in time—approximately between t=20 and 60,
as opposed to between t=30 and 50 for the DS run.
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Figure 5(b) shows the evolution of the SGS kinetic energy in time for both sets of models.
For the LM run, k appears to grow slower but later in time more energy is stored in the
subgrid scales. This agrees with Figure 6(a), where we plot the averaged term −�ij �Sij that
is responsible for the energy transfer between the resolved and subgrid scales. The non-
smoothness of the transfer term pro�le for the DS run is attributed to a signi�cant amount of
backscatter.
Figure 6(b) examines the behaviour of the SGS energy dissipation term in time. Overall,

the DS run predicts smaller amount of dissipation than the LM run. This may result in the
earlier transition to the viscosity-dominated phase in the LM run.
The most striking di�erence between the DS and LM models is demonstrated in Figure 7,

which shows how the fraction of total kinetic energy stored in the subgrid scales changes in
time. It should be noted that the �nal period of the isotropic decay is characterized by the
absence of the inertial range in the energy spectrum [24] thus the fraction of energy stored
in the subgrid scales should go to zero as the DIT approaches the �nal period. This is not
captured by the LM set of models, which leaves from 5 to 10% of the energy in subgrid
scales at all times, but the DS set of models captures the expected behaviour well.

6. CONCLUSIONS

Three new SGS models that belong to a new class of models—Dynamic Structure Models—
are presented and evaluated. The models are tested a priori using DNS data for the decaying
isotropic turbulence available from the literature and a DNS simulation of a non-reacting
incompressible mixing layer. A good agreement between the models and the modelled terms
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was found. An a posteriori test has been performed as well by simulating decaying isotropic
turbulence using LES code with new models. A good match between the energy decay rate,
predicted by experimental and theoretical studies, and the results of the LES was found. In
a priori testing the DS models demonstrate better performance than the models found in the
current literature, and the DS models are found to be more robust, i.e., depend less on the
base and test LES �lter size and shape.
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